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A B S T R A C T   

Glaucoma is a multifactorial progressive ocular pathology that manifests clinically with damage to the optic 
nerve (ON) and the retina, ultimately leading to blindness. The optic nerve head (ONH) shows the earliest signs 
of glaucoma pathology, and therefore, is an attractive target for drug discovery. The goal of this study was to 
elucidate the effects of reactive astrocytosis on the elastin metabolism pathway in primary rat optic nerve head 
astrocytes (ONHA), the primary glial cell type in the unmyelinated ONH. Following exposure to static equibiaxial 
mechanical strain, we observed prototypic molecular and biochemical signatures of reactive astrocytosis that 
were associated with a decrease in lysyl oxidase like 1 (Loxl1) expression and a concomitant decrease in elastin 
(Eln) gene expression. We subsequently investigated the role of Loxl1 in reactive astrocytosis by generating 
primary rat ONHA cultures with ~50% decreased Loxl1 expression. Our results suggest that reduced Loxl1 
expression is sufficient to elicit molecular signatures of elastinopathy in ONHA. Astrocyte derived exosomes 
(ADE) significantly increased the length of primary neurites of primary neurons in vitro. In contrast, ADE from 
Loxl1-deficient ONHA were deficient of trophic effects on neurite outgrowth in vitro, positing that Loxl1 
dysfunction and the ensuing impaired elastin synthesis during reactive astrocytosis in the ONH may contribute to 
impaired neuron-glia signaling in glaucoma. Our data support a role of dysregulated Loxl1 function in eliciting 
reactive astrocytosis in glaucoma subtypes associated with increased IOP, even in the absence of genetic poly-
morphisms in LOXL1 typically associated with exfoliation glaucoma. This suggests the need for a paradigm shift 
toward considering lysyl oxidase activity and elastin metabolism and signaling as contributors to an altered 
secretome of the ONH that may lead to the progression of glaucomatous changes. Future research is needed to 
investigate cargo of exosomes in the context of reactive astrocytosis and identify the pathways leading to the 
observed transcriptome changes during reactive astrocytosis.   

1. Introduction 

Glaucoma is a multifactorial progressive ocular pathology that 
manifests clinically with damage to the optic nerve (ON) and the retina, 

ultimately leading to blindness. Glaucoma develops with a characteristic 
three-step pathology that begins with remodeling of the optic nerve 
head (ONH), progresses to loss of ON axons, and ultimately results in 
degeneration of retinal ganglion cells (RGCs) (Calkins, 2012; Sharif, 
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2018). 
Primary open angle glaucoma (POAG) is the most common optic 

neuropathy in the United States and the leading cause of irreversible 
blindness worldwide (Kapetanakis et al., 2016). In POAG, elevated 
intraocular pressure (IOP) is widely considered the trigger for ONH 
remodeling and initiation of disease progression (Sharif, 2018; Weinreb 
et al., 2014, 2016). 

The ONH shows the earliest signs of glaucoma pathology, and 
therefore, is an attractive target for drug discovery. In patients, ONH 
remodeling manifests as optic nerve cupping (Quigley et al., 1981; 
Quigley and Green, 1979), which precedes the loss of RGCs and asso-
ciated vision loss (Harwerth and Quigley, 2006). However, the detailed 
molecular and biochemical changes associated with reactive astrocy-
tosis in the ONH remain unknown. 

Optic nerve head astrocytes (ONHA) are the primary cell type in the 
nonmyelinated ONH. Under physiological conditions, ONHA ensheath 
axons and provide homeostatic, trophic, metabolic and structural sup-
port. In response to pathological conditions, including biomechanical, 
bioenergetic and biochemical changes, ONHAs become activated and 
undergo a process referred to as reactive astrocytosis (Crawford Downs 
et al., 2011; Hernandez, 2000; Wang et al., 2017). While the exact role of 
reactive astrocytosis in central nervous system pathologies remains 
largely unknown, studies show that it can exert both beneficial and 
detrimental effects (Pekny and Pekna, 2014). In glaucoma patients, 
ONHA display a characteristic reactive phenotype (Wang et al., 2017), 
expression of glial fibrillary acid (GFAP; (Liu and Neufeld, 2000) and 
astrocyte remodeling has been shown to precede the ON axonopathy 
(Cooper et al., 2018). At the same time, inhibition of reactive astrocy-
tosis by deletion of the transcription factor signal transducer and acti-
vator of transcription 3 (STAT3) from astrocytes exacerbated 
glaucomatous pathology (Sun et al., 2017). Collectively, these data 
suggest the presence of multiple pathways converging in molecular 
signatures attributed to reactive astrocytosis. Elucidation of the path-
ways underlying the molecular signatures of reactive astrocytosis and 
their contribution to optic neuropathy and axonopathy may result in the 
identification of novel molecular therapeutic targets for pharmacologic 
intervention in multiple subtypes of glaucoma. 

The goal of this research was to elucidate the effects of reactive 
astrocytosis on the elastin metabolism pathway in primary rat ONHA. 
We identified a decrease in lysyl oxidase like 1 (Loxl1) expression in 
mechanical strain-induced reactive astrocytosis. We subsequently 
investigated the role of Loxl1 in reactive astrocytosis by generating 
primary rat ONHA cultures with decreased Loxl1 expression. Our results 
suggest that mechanical strain, similar to that experienced by patients 
with increased IOP, elicit molecular signatures of elastinopathy in 
ONHA through modulation of Loxl1. Interestingly, astrocyte derived 
exosomes (ADE) from Loxl1 deficient ONHA lost their trophic effects on 
neurite outgrowth in vitro. Further research in retinal ganglion cells, 
human cells, and in vivo systems is required, however, our data tenta-
tively suggest the possibility that Loxl1 dysfunction and the ensuing 
impaired elastin synthesis during reactive astrocytosis in the ONH might 
contribute to impaired neuron-glia signaling in glaucoma. 

2. Materials and methods 

2.1. Cell culture 

Primary rat ONHA were isolated and maintained as described by us 
previously (Ghosh et al., 2020; Kaja et al., 2015a, 2015b, 2017) in 
Dulbecco’s modification of Eagle’s medium supplemented with 4.5 g/L 
glucose, 4 mM L-glutamine, without sodium pyruvate (Corning, Thermo 
Fisher Scientific, Waltham, MA), 20% fetal bovine serum (FBS; Gemini 
Bio Products, West Sacramento, CA) and 1% penicillin/streptomycin 
(Gibco, Thermo Fisher Scientific, Waltham, MA) at 37 ◦C, 95% humidity 
and 5% CO2. All cell culture plasticware was from TPP (Techno Plastic 
Products, Trasadingen, Switzerland). Cells from passages 5–26 were 

used for all experiments. 
For exosome uptake assays, ONHA were seeded on 8-well chamber 

slides (Corning, Corning, NY) at a density of 3 × 104 cells/cm2. Treat-
ments were added after 48 h when cells had reached ~80% confluency 
and for up to 8 h. 

Cultures with reduced Loxl1 expression were generated as described 
in Section 2.3. Below. 

Primary E18 rat cortical neurons were purchased from Genlantis 
(Gene Therapy Systems Inc. San Diego, CA) and dissociated as described 
by us previously (Burroughs et al., 2012). Cells were maintained in 
Neurobasal A medium supplemented with B27 and GlutaMAX™ (all 
from Thermo Fisher Scientific, Waltham, MA) at 37 ◦C, 95% humidity 
and 5% CO2. Cells were seeded on BioCoat® poly-D-lysine/laminin--
coated 96-well plates or 8-well chamber slides (Corning, Corning, NY) at 
a density of 7.5 × 104 cells/cm2. Exosome uptake assays were performed 
after 7 days in culture. 

2.2. Exposure of ONHA cultures to equibiaxial mechanical strain 

ONHA were seeded at a density of 2 × 104 cells/cm2 in 6-well 
Collagen I-coated BioFlex® Culture Plates (Flexcell International Cor-
poration, Burlington, NC). Cells were grown to confluency (24–48 h), 
then the culture medium was replaced with serum-free medium and the 
plates were placed on the Flexcell FX-6000 Tension System (Flexcell 
International Corporation, Burlington, NC) and exposed to 10% static 
equibiaxial strain for 16 h, followed by a 2 h recovery period in a 
controlled atmosphere. Control cultures were placed in the same tissue 
culture incubator, without exposure to stretch. 

2.3. Loxl1 knock-down (KD) 

Transient Loxl1 KD was performed by transfection of Loxl1 small 
interference ribonucleic acid (siRNA) using Lipofectamine™ RNAiMAX 
Transfection Reagent (ThermoFisher Scientific, Waltham, MA), ac-
cording to the manufacturer’s instructions. 

Chronic Loxl1 KD was achieved by lentiviral transduction of Loxl1 
(SigmaAldrich, St Louis, MO; CSTVRS Mission shRNA Custom lentiviral 
particles). Non-targeting shRNA control (scramble) lentiviral particles 
were used as control. ONHA were plated in tissue culture coated 96 well 
plates at a density of 3 × 104 cell/cm2. Cells were allowed to proliferate 
for 24 h and lentiviral particles were added to the cells at a multiplicity 
of infection (MOI) of 0.016. Media was changed after 48 h incubation 
with the viral particles. Transduction efficiency was determined by 
antibiotic selection by adding 7.5 μg/ml puromycin (Gemini Bio-
sciences, West Sacramento, CA), as optimized by a puromycin cytotoxic 
curve. 

2.4. Polymerase chain reaction (PCR) 

Cell pellets were harvested from ONHA by scraping cells in ice-cold 
PBS. RNA isolation was performed using a Total RNA Purification Plus 
Kit (Norgen Biotek, Thorold, ON, Canada), according to the manufac-
turer’s recommendations and as described previously (Ghosh et al., 
2023). RNA concentration was measured by a nonospectrophotometer 
(ThermoFisher). cDNA was generated using the High Capacity cDNA 
Reverse Transcription Kit (Applied Biosciences, Thermo Fisher Scienti-
fic, Waltham, MA), as per the manufacturer’s instructions. Quantitative 
PCR was performed using an AriaMx RT PCR System (Agilent Tech-
nologies, Santa Clara, CA) and Taqman® gene expression assays 
(ThermoFisher Scientific). Glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) was used as the housekeeping gene control in every reaction. 
Taqman® assays are listed in Suppl. Table 1. Data were analyzed by 
relative quantification using the 2− ΔΔCT method (Livak and Schmittgen, 
2001). 
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2.5. Exosome isolation, characterization, and labeling 

Astrocyte-derived extracellular vesicles (exosomes, ADE) were iso-
lated by differential centrifugation of conditioned media (Luther et al., 
2018; Thery et al., 2006). Conditioned media was centrifuged sequen-
tially at 4 ◦C (2000×g for 20 min, 10,000×g for 30 min, 100,000×g for 
2.5 h). The resultant exosome pellet was washed in 1 ml of Hank’s 
Balanced Salt Solution (HBSS; Thermo Fisher Scientific), re-centrifuged 
at 100,000×g for 2.5 h, and then resuspended in 200 μl HBSS and stored 
at − 80 ◦C. 

Exosomal protein was quantified using the method of Lowry (Lowry 
et al., 1951) using bovine serum albumin as standard and converted to 
exosome number as described by us previously (Luther et al., 2018), 
where 1 μg total exosomal protein comprises 4.52 × 104 exosomes. 

Exosomes were characterized by NanoSight NS300 (Malvern In-
struments, Malvern, PA) using nanoparticle tracking analysis (NTA) by 
diluting ADE in HBSS and loading them into the instrument using a 1 ml 
tuberculin 31G syringe (Henke Sass Wolf, Tuttlingen, Germany) for size 
analysis. 

Exosomes were labeled with SYTO™ RNASelect™ Green Fluorescent 
cell Stain (S32703; Thermo Fisher Scientific, Waltham, MA) fluorescent 
dye for ADE uptake assays. Fluorescent dye was added to ADE samples to 
a final concentration of 10 μM. Samples with dye were incubated at 
37 ◦C for 20 min. Excess unincorporated dye was removed using Exo-
some Spin columns (Invitrogen, Thermo Fisher Scientific, Waltham, MA) 
following the manufacturer’s instructions. 

2.6. Immunocytochemistry and image acquisition 

ONHA cultures were labeled for filamentous (F-) actin using Alexa-
Fluor™ 488-conjugated phalloidin (Thermo Fisher Scientific, Waltham, 
MA) and actin fiber length was quantified using Matlab (Mathworks, 
Natick, MA, USA), as described by us in detail previously (Ghosh et al., 
2020). 

Immunocytochemistry was performed as described by us previously 
(Ghosh et al., 2020; Kaja et al., 2015b). Antibodies used for the pre-
sented studies are listed in Suppl. Table 2. Images were acquired using 
an SPE confocal microscope (Leica Microsystems, Buffalo Grove, IL). 

For uptake experiments, cells were fixed in 4% paraformaldehyde 
(PFA) at room temperature for 20 min, washed and then permeabilized 
using 0.1% Triton X-100 (SigmaAldrich, St Louis, MO) at room tem-
perature for 5 min. Cells were washed in PBS and mounted using Aqua- 
PolyMount (Polysciences Inc., Warrington, PA). Slides were imaged 
using a DeltaVision wide field fluorescent microscope (Applied Preci-
sion, GE) outfitted with a digital camera (CoolSNAP HQ2; Photomet-
rics), equipped with an oil immersion Olympus Plan Apo 60× objective 
lens (1.42 numerical aperture) with Resolve™ immersion oil with a 
refraction index of 1.515 (Richard Allen Scientific, #M3004). Images 
were analyzed using ImageJ software (FiJi, National Institute of Health, 
Bethesda, MD). 

Images from ADE uptake experiments and neuronal differentiation 
experiments were analyzed using the ImageJ software (Fiji) for mean 
fluorescence and the Neuron J plugin for mean neurite length (Meijering 
et al., 2004). 

2.7. Immunoblotting 

Exsomes isolated from primary optic nerve head astrocytes were 
lysed using a lysis buffer (0.5% w/v sodium dodecyl sulfate, 50 mM 
ammonium bicarbonate, 50 mM sodium chloride in dH2O supplemented 
with HALT® protease inhibitor). ONHA were lysed in Cytobuster™ 
protein extraction reagent (Millipore Sigma, St. Louis, MO). Protein 
quantification was performed by Lowry assay using bovine serum al-
bumin (BSA) (Bio-Rad Laboratories, Hercules, CA) as standard. Samples 
were diluted to the same concentration in lysis buffer. SDS-PAGE was 
performed in Laemmli buffer with and without 6% β-mercaptoethanol. 

Samples were denatured at 85 ◦C for 10 min. 6 μg of each protein sample 
was loaded on 15 well 4–12% NuPage Bis/Tris gels (Thermo Fisher 
Scientific, Waltham, MA) and electrophoresed at 150 V for 75 min. 
Samples were transferred from gels to nitrocellulose membrane 
(Amersham Protran, GE Healthcare, Chicago, IL) by wet transfer using 
methanol-free Western blot transfer buffer (Pierce®, Thermo Fisher 
Scientific, Waltham, MA) at 100 V for 80 min. Membranes were blocked 
in 5% milk in PBS with 0.2% Tween-20 (PBS-T) for 1 h 2.5% milk in PBS- 
T was used for primary antibody dilution and incubated overnight at 
4 ◦C. The appropriate secondary antibodies were used in 2.5% milk at 
1:20,000 dilution and incubated for 1 h at room temperature. Three 
washes of 5 min each were carried out with PBS-T after primary and 
secondary antibody incubations. Membranes were read using chem-
iluminescence with Luminata Forte reagent (Millipore Sigma, St. Louis, 
MO) and imaged using a ChemiDoc XRS + System (Bio- Rad Labora-
tories, Hercules, California). Data were analyzed in Image Lab software 
(Bio-Rad Laboratories, Hercules, California). Primary antibodies were 
rabbit anti-CD63 polyclonal antibody (PA5-92370, Thermo Fisher, 
Carlsbad, CA) and mouse anti-Alix monoclonal antibody (#2171, Cell 
Signaling Technology, Danvers, MA). Secondary antibodies were 
Amersham ECL horseradish peroxidase (HRP) conjugated anti-rabbit 
and anti-mouse antibodies (Cytiva, Marlborough, MA). Data were 
analyzed by densitometry with background correction and calculating 
the ratio of exosome to cell lysate expression. 

2.8. Data analysis and statistics 

All data were analyzed with the investigator blinded for treatment 
group. Data are presented as mean ± standard error of mean (SEM), 
geometric mean ± geometric standard deviation (SD) or as RQ ± RQmin/ 
RQmax.. Data were analyzed using one-tailed or two-tailed unpaired 
Student’s t-test, One-Way ANOVA. Differences between groups on ho-
moscedastic data sets were subsequently determined using Holm- 
Šidák’s multiple comparisons test as appropriate. Differences were 
considered statistically significant at the P < 0.05 level. Statistical 
analysis was performed using GraphPad Prism 10.0.2 software (Graph-
Pad Software, San Diego, CA, USA). 

All experiments were performed using multiple technical and bio-
logical replicates. Only biological replicates, i.e. data from separate 
experiments, each using separate passages of cells and/or exosome 
preparations were used for statistical analysis and are indicated as n 
throughout the manuscript. Each n was derived from multiple technical 
replicates. 

3. Results 

3.1. Mechanical strain-induced reactive astrocytosis is associated with 
transcriptional changes in the elastin metabolism pathway 

Exposure of ONHA to biomechanical forces that mimic increased IOP 
is a well-established insult that triggers reactive astrocytosis (Li et al., 
2022; Lu et al., 2017). However, the effects of reactive astrocytosis on 
the elastin metabolism and signaling pathways remain largely unex-
plored. To address this knowledge gap, we exposed primary rat ONHA to 
10% static equibiaxial mechanical strain for 16 h followed by a 2 h re-
covery period. Mechanical strain resulted in molecular and biochemical 
signatures characteristic of reactive astrocytosis, including a character-
istic remodeling of the actin cytoskeleton that includes shortening of 
actin fibers and formation of crosslinked actin networks (Fig. 1A), and 
increase in GFAP expression (Fig. 1B), and an increase in cellular levels 
of Reactive Oxygen Species (ROS) (Fig. 1C). 

Elastin synthesis involves two key extracellular matrix glycoproteins, 
fibrillin 1 (Fbn1), and fibulin 5 (Fbln5) and the deaminase activity of 
Loxl1, which activates tropoelastin thereby catalyzing its covalent 
crosslinking and formation of mature elastin fibers. Fibulin 2 (Fbln2) is 
associated with Fbn1, but has been shown to be dispensable for elastic 
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fiber formation (Sicot et al., 2008). Mechanical strain-induced reactive 
astrocytosis resulted in statistically significant reductions in the 
expression Loxl1 (44% decrease, n = 3, P < 0.05) and Eln (73% decrease, 
n = 3, P < 0.05) gene expression (Fig. 1D). In contrast, expression of 
Fbn1 (P = 0.15), Fbln2 (P = 0.13), and Fbln5 (P = 0.33) remained un-
affected (Fig. 1D). 

This novel finding of reduced elastin expression in ONHA response to 
biomechanical insult is consistent with our findings in glaucomatous 
DBA/2 J mice, which exhibit significantly reduced elastin expression in 
the ONH, but not the mylelinated ON region (Suppl. Fig. 1). 

3.2. Loxl1 KD is sufficient to induce reactive astrocytosis in ONHA 

Our novel finding of decreased Loxl1 expression in ONHA following 
mechanical strain insult prompted us to investigate whether reduced 
cellular Loxl1 levels are sufficient to elicit phenotypes of reactive 
astrocytosis. To this end, we used Loxl1 targeted siRNA to transiently 
reduce Loxl1 levels. Loxl1 gene expression was reduced by 58% (n = 3, 
P < 0.01; Fig. 2A) and accompanied by a marked reduction in Loxl1 
immunoreactivity in ONHA (Fig. 2B). Concomitantly, GFAP expression 
increased 2.2-fold (n = 14, P < 0.01; Fig. 2C–D). We further observed 
changes in the actin cytoskeleton consistent with reactive astrocytosis 
(Ghosh et al., 2020). Specifically, F-actin fiber length was significantly 
decreased in Loxl1 KD vs. scramble ONHA (n = 4, P < 0.01; Fig. 2E–F). 
Taken together, these data suggest that reduced Loxl1 levels are suffi-
cient to elicit reactive astrocytosis in ONHA. 

We next investigated whether Loxl1 KD resulted in changes to the 
elastin metabolism pathway. Notably, Eln gene expression was reduced 
by 29% (n = 3, P < 0.01; Fig. 3A), which was accompanied by a marked 
reduction in Eln immunoreactivity as assessed by immunocytochemistry 
(Fig. 3B). Expression of Fbln5 (Fig. 3C) and Fbn1 (Fig. 3D) were not 
changed in Loxl1 KD ONHA; mRNA levels of Fbln2 showed a small 
(21%), yet significant reduction compared to scramble control ONHA (n 
= 3, P < 0.05; Fig. 3E). 

Our data suggest a putative role for Loxl1 in reactive astrocytosis, 
and partial loss of Loxl1 appears sufficient to trigger reactive astrocy-
tosis in cultured ONHA. Notably, the observed reduction in Eln 
expression was similar to that observed in response to mechanical strain. 

3.3. Astrocyte-derived exosomes are readily taken up by both ONHA and 
neurons 

Recently, the role of exosomes, a subtype of extracellular vesicles, in 
intercellular communication has gained significant attention. However, 
there is limited knowledge to what extent ONHA secrete exosomes and 
what cell types can take up exosomes. Furthermore, data support a role 
for the extracellular matrix to regulate the secretion and uptake of 
exosomes, while at the same time, cargo of exosomes has been shown to 
remodel the extracellular matrix in cancer (for review, see Karampoga 
et al., 2022). We hypothesized that ONHA produce exosomes, which 
may be taken up by both astrocytes and neurons, and further, that 
reduced Loxl1 levels in ONHA may alter the functional properties of 
these ADE. 

To test our hypothesis, we isolated exosomes from ONHA cultures 
using established and validated ultracentrifugation protocols (Luther 
et al., 2018; Thery et al., 2006). 

We labeled exosomes using an RNA-specific nucleic acid stain 
(SYTO™ RNASelect™) that is readily taken up into exosomes and ex-
hibits bright fluorescence (absorption/emission maxima ~490 nm/530 
nm) when bound to RNA. We subsequently quantified fluorescence in-
tensity as a surrogate of exosome uptake. In a first experiment, we 
determined ADE uptake at 8 h following exposure of ONHA to 1 × 106 

ADE. We used rigorous experimental controls, including a negative 
control (dye processed in an identical way to exosomes, including col-
umn purification; “Dye Control”) and a positive control (dye dissolved in 
saline; “Dye Only”) to determine the dynamic range of the assay. Fluo-
rescence data were normalized to the Dye Control condition. ADE added 
to ONHA resulted in an ~2-fold increase of cellular fluorescence 
compared with unlabeled exosomes (n = 3; P < 0.05; Fig. 4A). The 
positive control resulted in an ~3.6-fold increase of fluorescence (n = 3; 
P < 0.001; Fig. 4A). 

We next determined the time-course of ADE uptake into ONHA for up 
to 8 h. Exposure of ONHA to ADE resulted in a time-dependent uptake of 
ADE into ONHA that continued to increase over an 8 h period 
(Fig. 4B–C). 

To evaluate the ability of neurons to take up ADE, we exposed cul-
tures of rat primary cortical neurons to ADE (1 × 106 ADE per well). We 
performed our initial control experiments at 8 h, which resulted in ~1.6- 
fold increase in fluorescence in neurons treated with labeled ADE (n = 3, 
P < 0.01; Fig. 5A). We further evaluated the time course of ADE uptake 

Fig. 1. Mechanical strain induced reactive astrocytosis is associated with gene expression changes in the Eln signaling pathway. A) Representative examples of 
phalloidin- and DAPI-labeled ONHA. Cytoskeletal remodeling is evident after exposure of ONHA to 10% static equibiaxial mechanical strain. Actin fibers are 
noticeably shortened, and cultures exhibited formation of crosslinked actin networks (arrows). Scale bar: 5 μm. B) Representative examples of GFAP immunore-
activity in ONHA exposed to mechanical strain. GFAP immunoreactivity was increased, confirming induction of reactive astrocytosis. Cells were co-labeled with 
DAPI. Scale bar: 5 μm. C) Reactive astrocytosis elicited by mechanical strain was associated with generation of oxidative stress. Representative images of ONHA 
labeled with CellROX™ are shown. Control ONHA showed only background fluorescence, while ONHA exposed to mechanical strain showed strong CellROX™ 
fluorescence indicative of ROS. Scale bar: 5 μm. D) Reactive astrocytosis was associated with statistically significant reductions in the gene expression of Loxl1 and 
Eln, while expression of Fbn1, Fbln2, and Fbln5 remained unaffected. Data are shown as relative gene expression (RQ) ± RQmin/RQmax. *P < 0.05. 
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into neurons for up to 8 h. ADE uptake peaked at 4 h (n = 3, P < 0.05; 
Fig. 5B–C) and the fluorescent signal returned to baseline after 8 h. 

3.4. Loxl1 deficiency does not alter physiochemical properties of ADE 

Based on these findings, we set out to test the hypothesis that Loxl1 
deficiency in ONHA may alter either or both the physiochemical and 
functional effects of ADE. To test this hypothesis, we generated ONHA 
cultures with reduced Loxl1 expression using lentivirus delivery of 

Loxl1-targeting shRNA. We targeted a Loxl1 expression level of 50% of 
naïve ONHA, as previously described for ON tissue from exfoliation 
glaucoma patients (Schlotzer-Schrehardt et al., 2012), which was 
accomplished by transduction using an MOI of 0.016 (Suppl. Fig. 2). 

We performed NTA to characterize of ADE using the Nanosight in-
strument. There was no difference in the size distribution between ADE 
from naïve ONHA (ADENaïve), ONHA transduced with a lentivirus 
expressing a non-targeting shRNA (ADEScramble), and ONHA with 
transduced with a lentivirus expressing Loxl1-targeting shRNA resulting 

Fig. 2. Loxl1 KD results is sufficient to increase GFAP immunoreactivity, suggestive of reactive astrocytosis. A) Loxl1 expression was decreased by 58% following 
transfection with Loxl1 targeted siRNA. B) Representative images of Loxl1 immunoreactivity confirmed successful Loxl1 KD in ONHA. Cells were co-labeled with 
DAPI. C) Concomitantly, GFAP immunoreactivity increased 2.2-fold, suggestive of activation of ONHA. D) Representative images of GFAP immunoreactivity are 
shown. E) Actin fiber length was significantly reduced in Loxl1 KD ONHA compared with scramble-transfected ONHA. F) Representative examples of phalloidin- 
labeled ONHA. Cytoskeletal remodeling is evident and actin fibers are noticeably shortened. Scale bar: 10 μm **P < 0.01, ***P < 0.001. 
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in ~50% reduced Loxl1 expression (ADELoxl1 KD) (Fig. 6A). Specifically, 
we fitted a Gaussian distribution for each sample and compared the 
amplitude (n = 3, P = 0.99), the mean (n = 3, P = 0.95) and standard 
deviation (n = 9, P = 0.59) of the Gaussian fit. Mean exosome size was 
~120 nm and not statistically significant different between the three 
experimental groups as determined by NTA (n = 3, P = 0.90; Fig. 6B). 

Expression of exosome markers was assessed by immunoblotting of 
ADE lysates. All three ADE expressed the prototypic exosome markers, 
Alix and CD63, which were detectable in cell and exosome lysates 
(Fig. 6C). The tetraspanin, CD81, was not identified in any of the three 
ADE lysates (data not shown). There was no significant difference in 
normalized Alix expression (n = 3; ANOVA, P = 0.99, Fig. 6D).In 
contrast, normalized CD63 expression was lower in both ADEScramble and 
ADELoxl1 KD, compared with ADENaïve (n = 3; ANOVA, P < 0.001, 
Fig. 6E). 

3.5. Loxl1-deficient ADE exerted diminished functional effects on neurite 
outgrowth in vitro 

We continued to investigate the functional effects of ADE by quan-
tifying neurite outgrowth of primary rat cortical neurons following 
exposure to ADE during neuronal development in vitro. ADE were added 
to neuronal culture on days 3 (D3) and 5 (D5) in culture at a concen-
tration of 100 μg/ml in 100 μl total volume, equivalent to 0.45 × 106 

ADE per well. Neurite outgrowth was quantified on day 7 (D7) in culture 
(Fig. 7A). 

Addition of ADENaïve to neuronal cultures resulted in a significant 
increase in neurite outgrowth by 20.1 ± 3.3 μm compared to neuronal 
cultures without ADE addition (n = 5, P < 0.05, Fig. 7B–C). ADEScramble 

elicited a similar increase in neurite growth (18.7 ± 2.0 μm; n = 5, P =
0.85; Fig. 7B–C) compared to the ADENaïve condition. In contrast, 
ADELoxl1 KD did not lead to an increase in neurite outgrowth (2.23 ± 4.0 

μm), and neurite outgrowth was significantly less compared to the 
ADEScramble group (n = 5, P < 0.05; Fig. 7B–C). 

4. Discussion 

In this study, we investigated the effect of mechanical strain-induced 
reactive astrocytosis on elastin expression in primary rat ONHA. We 
discovered dysregulated gene expression of components of the elastin 
metabolism pathway, most notably a reduction in Loxl1 expression. 
Decreased Loxl1 expression was sufficient to induce reactive astrocytosis 
in ONHA, resulting in decreased Eln expression and Eln immunoreac-
tivity. ADE were readily taken up by both ONHA and primary cortical 
neurons. ADELoxl1 KD, derived from Loxl1-deficient ONHA, exhibited 
diminished functional effects on neuronal differentiation, specifically 
neurite outgrowth, compared with ADEScramble and ADENaïve. 

Reactive astrocytosis was induced by exposure to ONHA to equi-
biaxial mechanical strain, which is a well-established method to elicit 
reactive phenotypes in astrocytes. We selected the experimental condi-
tions used for the experiments presented herein based on our own pre-
liminary studies (Kaja et al., 2020) and work by others that have 
reported phenotypes of reactive astrocytosis following 10% static me-
chanical strain. For example, a similar rearrangement of the actin 
cytoskeleton in response to stimulation by 10% mechanical strain was 
previously reported (Li et al., 2022). Notably, the observed phenotypes 
of reactive astrocytosis are consistent with previous work by us and 
others (Ghosh et al., 2020; Liu et al., 2022). We have previously 
demonstrated that short exposure to mechanical strain (4 h), an exper-
imental paradigm uniquely suited to quantify the effect of biomechan-
ical strain on second messengers and cytokines, leads to 
pannexin-mediated increases in adenosine triphosphate (ATP), which 
elicits P2X7 receptor activation and consequent increases in 
interleukin-6 (IL-6) expression and secretion (Lu et al., 2017). Exposure 

Fig. 3. Loxl1 deficiency results in decreased Eln expression. A) Loxl1 KD resulted in a 29% decrease of Eln gene expression. B) This was accompanied by a marked 
reduction in Eln immunoreactivity in ONHA. Cells were co-labeled with DAPI. Representative images are shown. Scale bar: 10 μm. C) Fbln5 expression was unaf-
fected by Loxl1 KD. D) Similarly, Loxl1 KD had no effect on Fbn1 expression. E) Expression of Fbln2 was decreased by 21% following Loxl1 KD. *P < 0.05; ns, 
not significant. 
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to cyclic mechanical strain (24 h, 12%, 1 Hz) has revealed changes to 
ONHA bioenergetics, including greater extracellular acidification and 
lower ATP-linked respiration, yet higher maximal respiration and spare 
capacity in stretched optic nerve head astrocytes (Pappenhagen et al., 
2022). 

While equibiaxial strain models the biomechanical forces upon the 
optic nerve head associated with elevated intraocular pressure in glau-
coma, the model also has significant limitations. These include applying 
strain to a monoculture of ONHA, single-substrate growth surfaces, and 
selection of a single time-amplitude combination of mechanical strain. 
Future multiparametric studies are needed to further investigate the 
effects of mechanical strain on ONHA and elastin metabolism. 

In vivo research has reported numerous phenotypes associated with 
reactive astrocytosis. In the mouse microbead model, astrocytes close to 
the myelination transition zone were found to extend new processes that 
follow the longitudinal axis of the ON and invade axon bundles (Wang 
et al., 2017). Recent RNA-sequencing and single-cell PCR experiments 
indicate that increased astrocytic phagocytosis is an early event 
following ocular hypertension (Zhu et al., 2023). Interestingly, a sig-
nificant amount of functional heterogeneity was identified in the as-
trocytes of the glial lamina, and notably, signs of reactivity were 
identified in naïve nerves (Zhu et al., 2023), providing a scientific basis 
for the experimental variability typically observed when studying 
reactive astrocytes. The role of biomechanical forces in triggering 
reactive astrocytosis was elegantly demonstrated in a rat model that 

combined controlled elevation of intraocular pressure with retrobulbar 
optic nerve transection, where ocular hypertension was required to 
trigger ONH astrocyte changes in structural orientation (Tehrani et al., 
2019). These experimental findings are representative of changes 
observed in astrocytes from glaucomatous donors (Hernandez, 2000; 
Hernandez et al., 2002; Varela and Hernandez, 1997), and support the 
generally accepted notion that reactive astrocytosis is an early process in 
the pathophysiology of primary open angle glaucoma. 

Yet, which features of reactive astrocytosis are beneficial vs. detri-
mental to glaucoma progression remains unknown. While oxidative 
stress is generally be considered a detrimental component of reactive 
astrocytosis (Fan Gaskin et al., 2021; Shim et al., 2018), knockout of 
signal transducer and activator of transcription 3 (STAT3) from astro-
cytes resulted in attenuated astrocyte hypertrophy and reactive 
remodeling (Sun et al., 2017). 

Our data are based on the novel finding that reactive astrocytosis in 
ONHA is associated with a decrease in Loxl1 and Eln expression. LOXL1 
is a copper-dependent monoamine oxidase required for cross-linking 
collagen and elastin fibers in the extracellular matrix and multiple sin-
gle nucleotide polymorphisms in the LOXL1 gene are associated with 
exfoliation glaucoma (for review, see (Li et al., 2021; Schlotzer-Schre-
hardt and Zenkel, 2019). Exfoliation glaucoma is generally considered 
to be the result of accumulating pseudoexfoliative material, visible at 
pupillary margin and anterior lens capsule, which obstructs the 
trabecular meshwork leading to increased IOP (Naumann et al., 1998; 

Fig. 4. Exosome uptake by ONHA. A) Exosomes were labeled with an RNA-specific nucleic acid stain (SYTO™ RNASelect™). ADE uptake was quantified after 8 h, 
which resulted in a significant increase in fluorescence. Dye Control and Dye Only conditions were used as negative and positive controls, respectively. B) To 
determine the time course of ADE uptake, ONHA were exposed to ADE over an 8 h period during which fluorescence steadily increased. C) Representative examples 
of ONHA at 8 h are shown. Scale bar: 5 μm *P < 0.05, ***P < 0.001. 
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Yuksel and Yilmaz Tugan, 2023). It has been proposed that pseu-
doexfoliation syndrome, and exfoliation glaucoma, are a form of elas-
tinopathy (Plateroti et al., 2015; Schlotzer-Schrehardt et al., 2012; 
Schlotzer-Schrehardt and Zenkel, 2019). 

Elastin is a critical component of the extracellular matrix and confers 
biomechanical compliance to the ONH and is a mediator of several 
important intracellular and extracellular signaling pathways (Navneet 
and Rohrer, 2022). We here found a reduction in Eln gene expression in 
cultured ONHA exposed to mechanical strain and in the presence of 
reduced Loxl1 levels. Furthermore, Eln immunoreactivity was signifi-
cantly reduced in the glaucomatous ONH of DBA/2 J mice. 

Interestingly, both LOXL1 and ELN expression were significantly 
reduced in the lamina of exfoliation glaucoma patients (Schlotzer-S-
chrehardt et al., 2012). Although LOXL1 expression was reduced in the 
lamina of POAG patients, this difference did not reach statistical sig-
nificance in this study (Schlotzer-Schrehardt et al., 2012), likely attrib-
utable to the small number of POAG samples investigated. Nonetheless, 
these data offer clinical support for our novel finding of reduced Loxl1 
expression in reactive ONHA. In contrast, there are numerous conflicting 
reports pertaining to the presence of abnormal elastin fibers and the 
presence of elastosis in POAG (Pena et al., 1998; Quigley et al., 1991, 
1996; Varela and Hernandez, 1997). 

The signaling pathways that regulate Eln and Loxl1 expression 
remain unknown. While reduced Loxl1 activity can readily be linked to 
impaired assembly of mature elastin fibers, one can only speculate how 
reduced Loxl1 levels elicit reduced Eln gene expression. Elevated levels 
of transforming growth factor beta (TGFβ) result in enhanced extracel-
lular matrix synthesis. The ensuing fibrosis in ocular tissues, including 

the ONH, has been proposed as contributing factor to glaucoma patho-
genesis (Fuchshofer, 2011; Fuchshofer and Tamm, 2012; Wallace and 
O’Brien, 2016). TGFβ signaling is known to increase LOXL1 via 
Smad2/3-mediated signaling (Fuchshofer and Tamm, 2012; Kim et al., 
2018; Sethi et al., 2011). Intriguingly, LOX, an isoform of LOXL1, has 
been proposed to be a negative regulator of TGFβ (Atsawasuwan et al., 
2008; Kutchuk et al., 2015). It is thus possible that reduction of LOXL1 
expression is a cellular anti-fibrotic response early during reactive 
astrocytosis. Furthermore, the presence of pro-inflammatory cytokines 
and modulators, such as prostaglandin E2, has been shown to decrease 
LOX1 levels in fibroblasts, however, it is not known if a similar mech-
anism exists in ONHA (Liu et al., 2016; Roy et al., 1996; Yokoyama et al., 
2014). 

To our knowledge, this report is the first investigating the properties 
of ADE from the ONH. Extracellular vesicles express a number of pro-
teins, including members of the tetraspanin family (CD9, CD63 and 
CD81), the endosomal sorting complex required for transport (ESCRT) 
proteins Alix and TSG101, in addition to members of the integrin, heat 
shock protein, flotillin, and cytoskeletal families of proteins (Gurung 
et al., 2021; Zhang et al., 2019). CD63, ESCRT and cytoskeletal com-
ponents are generally considered common among all exosomes 
(Mashouri et al., 2019) and Alix and tetraspanins are the 
best-established markers of exosomes (Kalra et al., 2012; Thery et al., 
2009; van Niel et al., 2018). Therefore, we herein probed for Alix, CD63, 
and CD81 in ADE. 

Alix expression was similar between ADENaïve, ADEScramble and 
ADELoxl1 KD, however, we did identify a significant decreased in CD63 
expression in lentivirus-transduced ONHA. However, no difference in 

Fig. 5. Exosome uptake by primary cortical neurons. A) Primary E18 rat cortical neurons were exposed to ADE for 8 h, which resulted in ~1.6-fold increase in 
fluorescence in neurons treated with labeled ADE. B) When investigating the time course of ADE uptake into neurons, fluorescence peaked at 4 h and had returned to 
baseline after 8 h. C) Representative examples of ADE uptake into neurons are shown. Scale bar: 5 μm *P < 0.05, **P < 0.01. 
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expression between ADEScramble and ADELoxl1 KD was found, making it 
unlikely that a change in CD63 is responsible for the differential func-
tional effects of these ADE populations. Rather, it is likely that changes 
in CD63 are associated with lentiviral transduction. 

ADE were taken up readily by ONHA and primary neurons in vitro, 
enabling a role of ADE in neuron-glia signaling in the ONH. Various 
different types of exosomes have been used as therapeutic modalities in 
preclinical ocular disease models, however, the focus has been on the 

Fig. 6. Characterization of exosomes. A) ADE were characterized by NTA to determine possible differences in size distribution between ADENaïve, ADEScramble, 
ADELoxl1 KD. No statistically significant differences in amplitude, mean, and standard deviation were identified. B) Mean exosome size was ~120 nm and did not 
differ between ADE populations. C) Expression of exosome markers was assessed by immunoblotting of cell and ADE lysates. Representative immunoblots of Alix and 
CD63 are shown. D) Expression of Alix did not differ between ADE populations as assessed by the ratio of background-corrected exosome to cellular lysate levels. E) 
CD63 expression was significantly reduced in ADEScramble and ADELoxl1 KD, compared with ADENaïve. ***P < 0.001. 
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therapeutic properties of mesenchymal stem cell derived exosomes (for 
review, see (Liu et al., 2020; Wu et al., 2023). Pioneering work has 
shown that bone marrow-derived mesenchymal stem cell-derived exo-
somes can promote RGC survival in the optic nerve crush model (Mead 
and Tomarev, 2017) and the DBA/2 J strain with pigmentary glaucoma 
(Mead et al., 2018). Interestingly, fibroblast-derived exosomes did not 
protect against RGC loss (Mead and Tomarev, 2017). 

ADE have received more attention in brain disorders and numerous 
studies have revealed neurotoxic and neuroprotective effects, as recently 
reviewed in detail (Zhao et al., 2021). ADE delivered systemically by 
intravenous injections were protective in a rat model for traumatic brain 
injury through modulation of the endogenous antioxidant pathway 
(Zhang et al., 2021), supporting functional roles of ADE in neuron-glia 
signaling. As such, these data offer precedent for the functional effects 
of ONHA-derived ADE reported in the present study. Specifically, our 
data on the functional effects of ADE on neuronal outgrowth suggest a 
role for ADE on the extracellular matrix thereby enhancing neurite 
formation. 

One limitation of our study is the use of rat primary cortical neurons 
rather than RGC to evaluate the functional effects of ADE. For this initial 
study, we selected cortical neurons due to their faster in vitro differen-
tiation and lesser biological variability. Current ongoing research is 
investigating the functional effects on RGC. In this study, we only 
evaluated the effects of ADE from ONHA with reduced Loxl1 expression. 
Future studies are needed to characterize ADE from ONHA exposed to 
mechanical strain. 

Elastin degradation has been proposed to play an important role in 
initiating neurodegenerative deficits in neurodegenerative disease, 
including Alzheimer’s disease (for review, see (Soles et al., 2023). 
However, studies investigating the specific contributions of elastin to the 
extracellular matrix and their effect on neurite outgrowth remain 
elusive. Exosomes can stimulate elastin synthesis, which has led to their 
proposed use as therapeutics for among other dermatologic disease (Shi 
et al., 2021; Thakur et al., 2023), and served as rationale for studying the 

effects of ADE on neurite outgrowth. 
Our data suggest a role of dysregulated LOXL1 function in reactive 

astrocytosis and subtypes of glaucoma associated with increased IOP, 
including POAG, even in the absence of genetic polymorphisms in 
LOXL1 typically associated with exfoliation glaucoma. This suggests a 
need for a paradigm shift toward considering LOXL1 activity and ELN 
metabolism as contributors to an altered secretome of the ONH that may 
lead to the progression of glaucomatous changes. Future research is 
needed to investigate astrocyte-derived exosomal cargo in the context of 
reactive astrocytosis and identify the molecular alterations in ADELoxl1 

KD responsible for the loss of functional effects. 
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