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Abstract: Relationships between retinal disease, diet, and the gut microbiome have started to emerge.
In particular, high-fat diets (HFDs) are associated with the prevalence and progression of several
retinal diseases, including age-related macular degeneration (AMD) and diabetic retinopathy (DR).
These effects are thought to be partly mediated by the gut microbiome, which modulates interactions
between diet and host homeostasis. Nevertheless, the effects of HFDs on the retina and adjacent retinal
pigment epithelium (RPE) and choroid at the transcriptional level, independent of gut microbiota,
are not well-understood. In this study, we performed the high-throughput RNA-sequencing of
germ-free (GF) mice to explore the transcriptional changes induced by HFD in the RPE/choroid.
After filtering and cleaning the data, 649 differentially expressed genes (DEGs) were identified, with
616 genes transcriptionally upregulated and 33 genes downregulated by HFD compared to a normal
diet (ND). Enrichment analysis for gene ontology (GO) using the DEGs was performed to analyze
over-represented biological processes in the RPE/choroid of GF-HFD mice relative to GF-ND mice.
GO analysis revealed the upregulation of processes related to angiogenesis, immune response, and
the inflammatory response. Additionally, molecular functions that were altered involved extracellular
matrix (ECM) binding, ECM structural constituents, and heparin binding. This study demonstrates
novel data showing that HFDs can alter RPE/choroid tissue transcription in the absence of the
gut microbiome.

Keywords: age-related macular degeneration; high-fat diet; gut microbiome; gut–choroid axis; RNA
sequencing; germ-free mice; complement cascade; angiogenesis

1. Introduction

Age-related macular degeneration (AMD) is the leading cause of irreversible blindness
in industrialized countries, affecting 196 million individuals worldwide in 2020 [1]. In recent
years, growing evidence has indicated that diet and nutrition may play important roles in
the pathogenesis of retinal diseases, including AMD and diabetic retinopathy (DR) [2–5].
Notably, several studies have found significant associations between high-fat diets (HFDs)
with increased prevalence and severity of AMD [6–9]. The retina is extremely metabolically
active and requires a unique lipid composition for visual processing, making this ocular
tissue highly susceptible to oxidative stress and metabolic fluctuations [10–13]. Maintaining
retinal homeostasis relies heavily on the adjacent retinal pigment epithelium (RPE) and
choroid for barrier protection, nutrient supply, lipid transport, and waste clearance [14].
Consequently, RPE/choroid pathology often precedes signs of retinal dysfunction and
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may be particularly sensitive to physiologic changes induced by HFDs [14–16]. Several
mechanisms have been proposed as to how HFDs can reproduce or accelerate retinal
disease: fatty acid signaling, metabolic dysregulation, vascular remodeling, and persistent
inflammation [15,17,18]. Crucially, HFDs may disrupt the complex equilibrium between
the RPE/choroid and retina, subsequently inducing hallmark features of AMD, including
the deposition of lipids and proteins beneath the RPE, the thickening of Bruch’s membrane
(BM), and choroidal neovascularization (CNV) [16,19–23].

Emerging literature suggests that HFD-induced features of AMD may partially be
facilitated by the gut microbiome. Trillions of gut microbes function in diverse ways
to impact health homeostasis, including the regulation of inflammation and metabolic
signaling [24]. Beyond the gastrointestinal tract, the effects of gut microbiota–host interplay
are observed in distant anatomic organs, including the heart, lungs, and brain [25–27].
Although research on retinal disease and the gut microbiome is in its nascent stage, several
studies have identified strong associations with the intestinal microbiome and AMD [28–30].
For example, Andriessen et al. demonstrated that HFDs can induce gut dysbiosis, which in
turn exacerbates laser-induced CNV in a model of AMD [31]. Other studies have reported
HFD-induced changes to gut microbiota composition and function, suggesting diet and
gut microbiota are closely related [32,33].

Considering this, a connection may exist between the gut microbiome, HFDs, and the
retina, as well as the RPE/choroid. We recently demonstrated that retinal transcription in
germ-free (GF) mice can be altered by an 8-week course of HFD [34]. However, whether
and how HFDs affect the adjacent RPE/choroid, which is essential for retinal homeostasis,
independent of the gut microbiome, is still unknown. In this study, we investigated
changes in RPE/choroid transcriptome induced by HFDs using high-throughput RNA-
sequencing in GF mice. We used the framework of AMD pathogenesis to highlight key
genes and pathways in the RPE/choroid corresponding to AMD, such as inflammation
and angiogenesis, which were significantly altered in response to HFDs in the absence of
the microbiome.

2. Materials and Methods
2.1. Animals and Diets

Mouse experiments were approved by the University of Chicago Institutional Animal
Care and Use Committee and adhered to research guidelines established by the Association
for Research in Vision and Ophthalmology (ARVO). Germ-free (GF) C57BL/6 adult, male
mice were bred and housed in the Gnotobiotic Research Animal Facility at the University of
Chicago. Starting at 7 weeks of age, GF mice were placed on a normal diet (ND) or high-fat
diet (HFD) for 8 consecutive weeks. The HFD (Teklad Custom Diet TD.130135) consisted
of 44.9% saturated fat, 14.8% protein, and 40.3% carbohydrate by caloric content (Envigo,
Indianapolis, IN, USA). Of the 40.3% carbohydrates, approximately 21% came from sucrose.
The normal diet (ND) consisted of 12% fat, 22% protein, and 66% carbohydrate, with an
estimated 0.3% derived from sucrose (Envigo, Indianapolis, IN, USA). GF mice lived under
a 12-h light cycle, and environmental conditions such as temperature and humidity were in
accordance with The Guide for the Care and Use of Laboratory Animals, 8th edition [35].
At 15 weeks of age, mice were euthanized with carbon dioxide and cervical dislocation.
RPE/choroid samples were placed on ice and processed for RNA-sequencing.

2.2. Sterility Monitoring

To ensure sterility, GF mice were housed in positive-pressure incubators and fed
diets that had been irradiated and autoclaved (250 ◦F for 30 min). Germ-free status was
evaluated as described previously [36]. Briefly, fecal samples were collected every week
and cultured aerobically at 37 ◦C and 42 ◦C, as well as anaerobically at 37 ◦C. Cultures
were assessed after 1, 2, 3, and 5 days. No positive cultures were identified throughout the
study. Additionally, DNA extraction and quantitative real-time polymerase chain reaction
(RT-PCR) were performed on fecal samples to screen for contamination using bacterial
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primers for the 16 S RNA-encoding gene (IDT, 8 F was 5′-AGA GTT TGA TCC TGG CTC
AG-3′, and 338 R was 5′-TGC TGC CTC CCG TAG GAG T-3′).

2.3. RNA Extraction

Eyes were enucleated, and RPE/choroid tissue was isolated on ice with all equipment,
surfaces, and tubes treated with RNase decontamination solution (Thermo Fisher Scientific,
Waltham, MA, USA) prior to use. Samples were stored at −80 ◦C in RNAlater solution
(Thermo Fisher Scientific, Waltham, MA, USA) until RNA was extracted using the RNeasy
kit from Qiagen (Qiagen, Hilden, Germany). Concentrations were quantified using a
Nanodrop 2000c (Thermo Fisher Scientific, Waltham, MA, USA) prior to sequencing.

2.4. RNA Sequencing

RNA from eight samples from GF-ND (n = 4) and GF-HFD (n = 4) was used for
analysis. A Bioanalyzer at the University of Chicago Genomics Core was used to determine
that RNA quality met appropriate RNA integrity numbers (RIN). Next, cDNA libraries
were constructed using TruSeq RNA Sample Prep kits (Illumina, San Diego, CA, USA) to
generate 100bp paired-end reads, which were indexed for multiplexing and sequenced
using PE100bp on the NovaSeq 6000 System (Illumina, San Diego, CA, USA). Data was
provided in FASTQ format and analyzed in R.

2.5. Statistical Analysis

The secondary analysis of RNA-sequencing data was conducted in Globus Genomics,
an enhanced, cloud-based analytical platform that provides Next-Generation Sequence
analysis tools and workflow capabilities. Tools such as STAR [37], featureCounts [38],
and Limma [39,40] were run from within the Globus Genomics platform. We used STAR
(version 2.4.2 a, Stanford University, Stanford, CA, USA) aligner default parameters to align
the RNA-sequencing reads to the reference mouse genome (GRCm38) for all samples. A raw
gene expression count matrix was generated with featureCounts (version subread-1.4.6-p1),
and gene annotation was acquired from Gencode vM23 [41]. The STAR default parameter
for the maximum mismatches was 10, which was optimized based on mammalian genomes
and recent RNA-sequencing data.

Genes with low expression (count-per-million < 10) were filtered using edgeR [42,43].
Significant DEGs estimated by Limma with an adjusted p-value < 0.05 and LogFC > 1.5
were selected for further downstream analysis. Enrichment analysis in Lynx suite took both
the upregulated and downregulated DEGs in GF and extracted the over-represented gene
ontology functional classification (molecular functions, biological processes, and cellular
components) [44]. The enrichment gene ratio was measured using the number of input
DEGs that mapped to the pathway divided by the total number of genes in that pathway.
A list of all DEGs is available in Supplementary Table S1.

3. Results
3.1. High-Fat Diet Is Associated with Changes in the Rpe/Choroid Transcriptome

In order to study the effects of a HFD on the RPE/choroid in the absence of the mi-
crobiome, we performed high-throughput RNA-sequencing (RNA-seq) on RPE/choroid
tissue in GF-ND and GF-HFD mice (n = 4 per group). After the removal of pseudo-
genes and uncharacterized cDNA using the National Center for Biotechnology Informa-
tion (NCBI) database and applying a false discovery rate (FDR) < 0.05 with an absolute
LogFC > 1.5 threshold, 649 differentially expressed genes (DEGs) were identified for down-
stream analysis. Of the 649 DEGs identified, the majority of the genes were transcriptionally
upregulated by HFD, with only 33 genes downregulated. A list of all DEGs is available
in Supplementary Table S1. The top 30 overexpressed genes are shown in Table 1, which
include genes involved in natural killer (NK) T-cell functioning, such as Natural killer
cell receptor 2B4 (Cd244a) and Natural cytotoxicity triggering receptor 1 (Ncr1), as well
as inflammatory markers, including Tumor necrosis factor receptor superfamily member
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13B (Tnfrsf13b), C-C motif chemokine ligand 19 (Ccl19), and Prostaglandin-endoperoxide
synthase 2 (Ptgs2 or Cox-2). The top 30 overexpressed genes also included mediators of en-
dothelial adhesion and vessel permeability, notably Selectin E (Sele) and Lysophosphatidic
acid receptor 3 (Lpar3). Additionally, a heatmap was generated using an FDR < 0.01 and
absolute LogFC > 1.5 threshold to demonstrate the hierarchical clustering of the DEGs by
experimental groups, indicating that the changes observed in RPE/choroid transcription
likely could be attributed to HFD in the absence of microbiota (Figure 1).

Table 1. Top 30 differentially expressed genes upregulated by high-fat diet (HFD).

Gene LogFC Adjusted p-Value Protein

Cd244a 6.27 1.62 × 10−3 Natural Killer Cell Receptor 2B4
Ripply1 5.52 9.98 × 10−3 Ripply Transcriptional Repressor 1
Lilrb4a 5.28 4.81 × 10−2 Leukocyte Immunoglobulin-Like Receptor Subfamily B member 4
Fcer1a 5.26 2.85 × 10−2 Fc Epsilon Receptor Ia

Dnajc22 5.24 1.44 × 10−2 DnaJ Heat Shock Protein Family (Hsp40) Member C22
Alkal2 5.11 3.11 × 10−2 ALK And LTK Ligand 2
Ncr1 5.04 1.16 × 10−2 Natural Cytotoxicity Triggering Receptor 1
Ccl19 4.94 7.60 × 10−3 C-C Motif Chemokine Ligand 19

Slc38a11 4.81 3.85 × 10−2 Solute Carrier Family 38 Member 11
Ces2e 4.71 4.62 × 10−2 Pyrethroid Hydrolase Ces2e
Lpar3 4.66 1.73 × 10−2 Lysophosphatidic Acid Receptor 3
Sele 4.62 4.49 × 10−2 Selectin E

Sirpb1a 4.61 9.02 × 10−3 Signal-Regulatory Protein Beta 1A
Efhb 4.57 1.33 × 10−2 EF-Hand Domain-Containing Family Member B

Pgpep1l 4.56 2.15 × 10−2 Pyroglutamyl-Peptidase 1-Like Protein
Tnfrsf13b 4.54 2.94 × 10−2 Tumor Necrosis Factor Receptor Superfamily Member 13B

Il12b 4.49 2.65 × 10−2 Interleukin-12 Subunit Beta
Tmem232 4.46 2.53 × 10−2 Transmembrane Protein 232

Trbc1 4.41 1.51 × 10−2 T Cell Receptor Beta Constant 1
Slc4a1 4.34 3.36 × 10−2 Solute Carrier Family 4 Member 1

Olfr574 4.34 1.60 × 10−2 Olfactory Receptor Family 51 Subfamily T Member 1
Xlr 4.28 5.51 × 10−3 X-Linked Lymphocyte-Regulated Protein PM1

Gpr141 4.25 4.73 × 10−2 G Protein-Coupled Receptor 141
Cnr2 4.25 3.48 × 10−2 Cannabinoid Receptor 2
Mael 4.23 4.08 × 10−2 Maelstrom Spermatogenic Transposon Silencer
Lao1 4.22 4.06 × 10−2 Amine Oxidase

Mcoln2 4.16 1.72 × 10−2 Mucolipin TRP Cation Channel 2
Ccl22 4.16 3.77 × 10−2 C-C Motif Chemokine Ligand 22

Rnase1 4.11 2.66 × 10−2 Ribonuclease A Family Member 1, Pancreatic
Ptgs2os 4.11 3.37 × 10−2 Prostaglandin-Endoperoxide Synthase 2, Opposite Strand

3.2. High-Fat Diet Upregulates Multiple Biological Processes and Genes Related to Inflammation
and Angiogenesis

After identifying 649 DEGs, we performed enrichment analysis using the Lynx suite
for gene ontology (GO) in order to identify over-represented biological processes in the
RPE/choroid of GF-HFD mice relative to GF-ND mice [44]. This unbiased approach
identified angiogenesis as the most significantly upregulated biological process (adjusted
p-value = 5.51 × 10−10) due to HFD intervention (Table 2, Figure 2). Among the angiogenic
genes affected were Vascular endothelial growth factor C (Vegfc); angiopoietin genes Angpt1,
Angpt2, and Angptl2; their respective receptors Tie1 and Tie2 (Tek); and platelet derived
growth factors Pdgfc and Pdgfd, which together are involved in angiogenesis, maturation,
and vascular remodeling. Additionally, the GF-HFD group demonstrated upregulation of
GO biological processes related to the inflammatory response and immune response, such
as Complement factor H (Cfh) and TNF superfamily genes Tnfaip2, Tnfrsf11b, Tnfrsf13b,
Tnfrsf19, Tnfrsf1b, Tnfsf10, and Tnfsf14.
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Figure 1. Heatmap with hierarchal clustering demonstrating DEGs with |LogFC| > 1.5 and adjusted 

p-value < 0.01 between germ-free mice on normal diet (GF-ND, n = 4) and germ-free mice on high-
Figure 1. Heatmap with hierarchal clustering demonstrating DEGs with |LogFC| > 1.5 and adjusted
p-value < 0.01 between germ-free mice on normal diet (GF-ND, n = 4) and germ-free mice on high-fat
diet (GF-HFD, n = 4). Z-score was calculated using LogFC values, with red and blue colors indicating
upregulated and downregulated genes, respectively.
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Table 2. Top 10 biological processes upregulated by high-fat diet (HFD).

Biological Processes p-Value Adjusted
p-Value Gene Ratio Genes

Melanocyte
differentiation 1.79 × 10−7 9.49 × 10−5 0.35 Edn3, Ednrb, Mitf, Mlph, Rab27a, Slc24a5, Sox10,

and Tyrp1

Angiogenesis 2.08 × 10−13 5.51 × 10−10 0.13

Ackr3, Angpt1, Angpt2, Angptl2, Apold1, Calcrl, Cfh,
Clic4, Col18a1, Col8a1, Col8a2, Cxcr3, Cyp1b1, Ecscr,
Ephb4, Esm1, Fap, Fzd8, Htatip2, Mcam, Nrp2, Pik3r6,
Plxnd1, Ptgs2, Ptprb, Rapgef3, Rhoj, Rspo3, Tbx4, Tek,

Tgfbr3, Tie1, Tnfaip2, and Vegfc

Cell surface receptor
signaling pathway 1.50 × 10−9 1.50 × 10−6 0.13

Adgra3, Adgrf5, Adgrg6, Calcrl, Cd22, Cd86, Cxcr3,
Cysltr1, Edn3, Fcer1a, Fzd2, Fzd4, Fzd7, Fzd8, Gpr157,
Il12b, Itgal, Itpkb, Npr1, Osmr, Ostn, Pth1r, Tnfrsf1b,

and Tshr

Positive regulation of
angiogenesis 5.68 × 10−7 2.15 × 10−4 0.12

Angpt2, Brca1, Chil1, Cxcr3, Cybb, Cyp1b1, Cysltr1,
Ets1, Itgb3, Itgb8, Pik3r6, Ptgis, Rapgef3, Tek, Tgfbr2,

Thbs1, Tie1, and Vegfc

Inflammatory response 1.14 × 10−9 1.50 × 10−6 0.10

Agtr1a, Axl, Bmp2, Bmp6, Ccl19, Ccl22, Ccl4, Cfh,
Chil1, Cnr2, Csf1r, Cxcl10, Cxcr3, Cyba, Cybb, Cysltr1,
Gbp5, Il25, Lilrb4a, Lipa, Ly86, P2rx7, Pla2g2e, Prkcq,

Ptgs1, Ptgs2, Rarres2, Sele, Selp, Slc11a1, Thbs1,
Themis2, Tlr13, and Tnfrsf1b

Response to bacterium 1.29 × 10−6 3.56 × 10−4 0.09

Adamts9, Bank1, Bmp2, Cxcl10, Fkbp5, Gbp5, Gpc3,
Gzma, Ifi211, Ifit3, Iigp1, Lrat, Ms4a1, Myo1f,

Naaladl2, Nexn, Ociad2, P2rx7, Rnase1, Serpina3f,
Serpinb9, Slc11a1, Tgtp1, and Trf

Immune response 8.75 × 10−7 2.90 × 10−4 0.08

Ackr3, Azgp1, B2m, Bmp6, Ccl19, Ccl22, Ccl4, Cd28,
Cd86, Cfh, Colec12, Ctsk, Ctss, Cxcl10, Cxcl12, Cxcr3,
Endou, Enpp2, H2-Ab1, H2-Eb1, H2-M3, Itgb8, Ly86,

Serpinb9, Tgfbr3, Tgtp1, Tnfrsf1b, Tnfsf10,
Tnfsf14, Vav1

Cell adhesion 1.48 × 10−8 9.80 × 10−6 0.08

Ackr3, Azgp1, Cd22, Cd33, Cd84, Cldn1, Cldn2,
Cntnap4, Col12a1, Col18a1, Col8a1, Col8a2, Cyp1b1,

Dpp4, Ephb4, Fap, Fblim1, Fbln5, Gpnmb, Hpse, Icam2,
Itga9, Itgal, Itgb3, Itgb8, Jcad, Kitl, Lgals3bp, Ly9,

Mcam, Mybpc2, Nid2, Pcdh12, Plpp3, Sele, Sell, Selp,
Siglecf, Spp1, Svep1, Thbs1, Vcam1, and Vwf

Positive regulation of
cell population

proliferation
1.98 × 10−7 9.49 × 10−5 0.07

Adora2b, Agtr1a, Aldh1a2, Bambi, Calcrl, Cd38, Cdk2,
Clec7a, Col18a1, Csf1r, Cxcl10, Cxcl12, Cxcr3, Dpp4,
Edn3, Ednra, Ednrb, Enpp2, Esm1, Ets1, Fgf7, Gab2,

Gcnt2, Gli1, Kitl, Lrp5, Nog, Ntn1, Osmr, Pax3, Pdgfc,
Pdgfd, Ptgs2, Pth1r, S100b, Stox1, Tgfbr3, Thbs1, Tshr,

and Vegfc

Multicellular organism
development 1.21 × 10−6 3.56 × 10−4 0.06

Ackr3, Angpt1, Angpt2, Ano1, Axl, B2m, Bmp2, Bmp6,
Cdh19, Csf1r, Ecscr, Eda2r, Ephb4, Eya1, Eya2, Fhl1,

Foxd1, Foxd3, Fst, Fzd2, Fzd4, Fzd7, Fzd8, Gli1,
Gpr157, Gsx2, Htatip2, Krt8, Lbx1, Lrp5, Mael, Mertk,
Met, Mgp, Mitf, Nog, Nrp2, Ostn, Pax3, Pdgfc, Pdgfd,

Pitx2, Plpp3, Plxnd1, Ripply1, Sema3b, Sema3c,
Sema6d, Serpine2, Sfrp5, Shisa2, Smoc1, Sox6, Stpg4,
Tbx4, Tek, Tie1, Tmem88, Tnfaip2, Vegfc, and Wipf3

Our analysis also indicated significant alterations induced by HFD in molecular
processes such as extracellular matrix (ECM) binding, ECM structural constituents, and
heparin binding (Table 3, Figure 3). As the RPE/choroid has multiple functions in addition
to providing nutrient exchange to the retina, the connective tissue cells types such as
fibroblasts, melanocytes, pericytes, and immune cells are active players in maintaining
homeostasis [45]. Genes involved in ECM interactions that were upregulated include
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Apolipoprotein E (Apoe); the matrix metalloproteinase Adamts9; collagens Col2a1, Col8a1,
and Col10a1; and fibronectins such as Fbln1 and Fbln5.
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Figure 2. Enrichment analysis of DEGs between GF-HFD mice (n = 4) and GF-ND mice (n = 4)
using Lynx. Gene ontology analysis is shown for top 10 biological processes upregulated in GF-HFD
mice compared to GF-ND mice, highlighting pathways including the angiogenic, inflammatory, and
immune responses. The corresponding table demonstrates detailed statistics and genes involved in
these processes.

Table 3. Top 10 molecular pathways upregulated by high-fat diet (HFD).

Molecular Pathways p-Value Adjusted
p-Value Gene Ratio Genes

Hemoglobin binding 2.43 × 10−5 3.96 × 10−3 0.57 Hbb-bs, Hbb-bt, Lrp2, Slc4a1
Sialic acid binding 2.30 × 10−5 3.96 × 10−3 0.38 Cd22, Cd33, Sele, Selp, Siglecf

Extracellular matrix
binding 2.09 × 10−5 3.96 × 10−3 0.23 Adamts15, Clec14a, Dcn, Itgb3, Smoc1, Spp1,

and Thbs1
Fibronectin binding 2.64 × 10−5 3.96 × 10−3 0.23 Ctsk, Ctss, Fbln1, Igfbp3, Igfbp5, Itgb3, Thbs1

Integrin binding 2.81 × 10−7 2.12 × 10−4 0.13
Cxcl12, Esm1, Fap, Fbln1, Fbln5, Fbn1, Gpnmb, Icam2,
Itgb3, Itgb8, Lcp1, Lilrb4a, Plpp3, Spp1, Thbs1, Vcam1,

and Vwf
Extracellular matrix

structural constituent 5.40 × 10−5 4.08 × 10−3 0.11 Col10a1, Col18a1, Col8a1, Col8a2, Col9a3, Fbln1, Fbn1,
Fbn2, Matn2, Nid2, Ntn1, Thbs1, Vwf

Signaling receptor
activity 4.79 × 10−6 1.21 × 10−3 0.10

Cd48, Colec12, Cxcr3, Eda2r, Fzd4, Itgb8, Klrk1, Lrp2,
Mrc2, P2rx7, Paqr6, Stra6, Tek, Tgfbr2, Tlr13, Tnfrsf19,

Trem2, and Tshr

Carbohydrate binding 2.04 × 10−6 7.73 × 10−4 0.10
Agl, C4b, Cd22, Cd33, Clec12a, Clec14a, Clec1a,

Clec4a2, Clec4d, Clec4n, Colec12, Galm, Galnt6, Klrk1,
Man2a1, Mrc2, Sele, Sell, Selp, Siglecf

Heparin binding 4.12 × 10−5 3.96 × 10−3 0.10
Adamts1, Adamts15, Apoe, Cfh, Cxcl10, Fbn1, Fgf7,
Gpnmb, Nrp2, Rspo3, Selp, Serpine2, Smoc1, Tgfbr3,

and Thbs1

Protein
homodimerization

activity
2.24 × 10−5 3.96 × 10−3 0.06

Ano1, Ano6, Apoe, Atp2a1, B2m, Cat, Csf1r, Dpp4,
Dpyd, Fap, Fbln5, Fzd4, Galm, Gbp3, Gbp5, Gzma,
H2-M3, Hnf4a, Impa2, Man2a1, Mgll, Nog, Npr3,

Pdgfc, Pitx2, Pon1, Pon3, Ptgs2, Pth1r, Rdh5, S100b,
Slc11a1, Slc4a1, St6gal1, Tpd52l1, Trim21, Trim30d,

Tyr, Tyrobp, and Tyrp1
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Figure 3. Enrichment analysis of DEGs between GF-HFD mice (n = 4) and GF-ND mice (n = 4) using
Lynx. Gene ontology analysis is shown for top 10 molecular functions upregulated in GF-HFD mice
compared to GF-ND mice. Functions such as extracellular matrix (ECM) binding, ECM structural
constituents, and heparin binding are highlighted. The corresponding table demonstrates detailed
statistics and genes involved in these functions.

4. Discussion

Diet and nutrition are significant risk factors in retinal disease pathobiology, including
AMD and DR [46,47]. Specifically, several studies have emphasized an association between
HFDs and the increased prevalence and progression of AMD [8,9]. Using animal models of
neovascular AMD, our team previously has demonstrated that HFDs can increase laser-
induced CNV lesion size, vascular leakage, and the formation of sub-RPE deposits [19].
Other studies, too, have recapitulated AMD-like features in mice fed HFDs [22,23]. Given
the role of the gut microbiome in immunomodulation, nutrition, and energy metabolism,
there is a growing body of literature connecting the gut microbiome and AMD [2,29,30,48].
Gut microbiota may be key mediators of HFDs in retinal disease, whereby HFDs induce
gut dysbiosis, increase intestinal permeability, and induce chronic inflammation in AMD
models irrespective of total energy intake [31]. We previously studied HFD-induced
changes in retinal transcription independent of gut microbiota; however, its impact at the
level of the RPE/choroid is unknown [34].

In this study, we sought to uncouple the impact of HFDs on RPE/choroidal biology
from the gut microbiome. In both dry and wet AMD, pathological changes typically occur
first in the supporting tissue of the RPE/choroid before damage is observed to underlying
retinal cells [14]. In addition, there is evidence in the RPE/choroid of lipid accumulation
that contain fats derived exclusively from diet, which helps corroborate the role of diet
in RPE/choroid biology [49]. To the best of our knowledge, this is the first study to
explore the transcriptional changes induced by HFDs in the RPE/choroid in the absence
of the gut microbiome by using germ-free mice. After analyzing and filtering the data,
we identified 649 DEGs and performed GO enrichment analysis to highlight changes in
important biological pathways.

4.1. High-Fat Diet Affects Gene Expression in Angiogenic Pathways in Germ-Free Mice

Angiogenesis is a hallmark feature of wet AMD, which may account for up to 90% of
cases of AMD-related severe vision loss [50]. During this process, abnormal blood vessels
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from the choroid infiltrate the sub-RPE space, resulting in vascular leakage, bleeding, scar-
ring, and damage to the macula [51]. Consequently, therapeutics that limit angiogenesis
are widely-used to delay AMD progression, such as anti-VEGF therapy [52]. In the absence
of the microbiome, HFD upregulated pathways are involved in angiogenesis, as well as
in its positive regulation (Figure 1). In addition to Vegfc, HFD significantly elevated the
angiopoietin genes Angpt1, Angpt2, and Angptl2. Angiopoietins are selective growth factors
for vascular endothelium. The ANG signaling pathway is heavily involved in vascular
development in both the choroid and retina [53]. Specifically, choroidal neovasculariza-
tion occurs when Vegf and Angpt2 are elevated in conjunction with the disruption of
Bruch’s membrane and the RPE [51]. This relationship is substantiated by other studies
showing that Angpt2 is necessary for ischemia-induced neovascularization in mice lacking
Angpt2 [53]. Recently, the FDA approved faricimab, a biologic targeting both VEGF and
ANGPT2, in the treatment of AMD and DR. We also detected the concomitant upregulation
of the respective angiopoietin receptors, Tie1 and Tek (Tie2), which are tyrosine kinases that
transduce the signaling pathways for vessel maturation [54]. VEGF and ANG drive com-
plementary angiogenic pathways, with VEGF inducing early vessel sprouting and growth,
whereas ANG1 mediates vascular remodeling, maturation, and protection [55,56]. Similarly,
angiopoietin-like 2 protein (Angptl2) is involved in angiogenesis and vasculogenesis [57].
Studies have found that excess ANGPTL2 signaling results in chronic inflammation and
irreversible tissue remodeling [58]. Consequently, VEGF-inhibition may be only effective
so long as neovascularization is in its nascent stage, which may explain why an estimated
nearly 50% of patients with neovascular eye disease do not respond to anti-VEGF treat-
ments such as bevacizumab or ranibizumab [53,59–61]. Clinical trials have begun that
either target ANG2 alone or concurrently with VEGF for treatment of AMD [62,63].

In addition to the ANG pathway, we found that HFDs elevated the transcription of
Platelet-derived growth factors C and D (Pdgfc and Pdgfd), which are angiogenic factors
that play critical roles in several ocular neovascular diseases, including AMD [64]. PDGF
levels are normally low or undetectable, but they become elevated in numerous vascular
and cardiovascular pathologies [65]. Crucially, PDGF ligands help recruit and maintain
choroidal fibroblasts and pericytes, which serve as scaffolds for vascular endothelium. In
mouse models of wet AMD, both Pdgfc and Pdgfd expression is upregulated. PDGFC
also positively regulates other pro-angiogenic factors, such as VEGF and PDGFB [64].
PDGFs are targets for AMD treatment both in preclinical trials and in clinical trials, where
dual anti-PDGF and anti-VEGF therapy has demonstrated superior efficacy to anti-VEGF
monotherapy [66,67].

Additional genes involved in angiogenesis that were transcriptionally upregulated
with HFD included Lpar3 and Tnfaip2, as well as Cyp1b1 and Cxcr3. Previous studies have
linked Cxcr3 dysregulation with wet AMD, though the nature of this pathway is not clearly
understood [68]. Cyp1b1 is another gene required for the neovascular response to ischemic
retinopathy as it plays roles in angiogenesis and capillary morphogenesis [69,70].

4.2. High-Fat Diet Alters Gene Expression Involved in Inflammatory and Immune Response
Pathways in Germ-Free Mice

Inflammation is present during every stage of AMD pathology, beginning with drusen
formation; drusen are deposits of cellular debris that serve as nodes for inflammatory
processes [71]. Inflammatory signaling molecules, macrophages, and activated resident
microglial cells localize to sites of drusen deposits, Bruch’s membrane degeneration, and
CNV [72,73]. Serum levels of inflammatory markers such as C-reactive protein (CRP), as
well as retinal autoantibodies, are significantly associated with AMD advancement [74,75].
As a result, there are a host of preclinical and clinical trials using anti-inflammatory agents
to treat AMD [72,76]. Current literature supports the notion that HFDs can promote the
pathogenesis of diseases in multiple organ sites by means of inducing chronic, low-grade
inflammation and accelerating age-related cellular processes [77]. Part of this “inflammag-
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ing” is thought to be mediated by gut microbiota that can release inflammatory products,
signal to other organ sites, and regulate circadian rhythm [78,79].

In this study, we found that HFDs in the absence of the microbiome altered the gene
transcription of inflammatory pathways in the RPE/choroid. One of the top 10 biological
processes upregulated by HFDs was the inflammatory response (Figure 1). Transcriptional
upregulation was observed in multiple genes involved in the chemoattraction, activation,
and functioning of natural killer T (NKT) cells, such as Cd244a, Cd48, Cxcl10, Granzyme
A (Gzma), Perforin (Prf1), and Il12b. NKT cells act at the interface of innate and adap-
tive immunity, acting rapidly to immunogenic stimuli and possessing powerful cytotoxic
capabilities [80]. NKT cell activity has been associated with a number of neurodegen-
erative/neuroinflammatory diseases such as Alzheimer’s and multiple sclerosis [81,82].
Immunohistological studies have identified several immune cell-types in the subretinal
space in AMD patients, including natural killer lymphocytes, suggesting that NKT cells
may play a role in its pathogenesis [83]. NKT cells are reported to accumulate during
laser-induced CNV. In support of this, two different NKT-deficient mouse strains demon-
strated decreased CNV severity and Vegf expression. Furthermore, co-culturing RPE with
NKT cells confirmed the ability of NKT cells to produce VEGF, potentially driving further
angiogenesis [84]. Haplotypes of killer cell immunoglobulin-like receptors (KIRs) found on
NKT cells are associated with AMD in certain populations [85].

Cd244a, a risk factor for inflammatory diseases such as rheumatoid arthritis, was the
most highly upregulated gene in our data set [86]. Cd244a is a cell-surface receptor on
NKT cells that mediates their expansion, activation, and cytotoxicity [87]. In addition,
its principal binding partner, Cd48, was also upregulated in GF mice fed a HFD. Cd48
is also involved in other immunoregulatory functions, including immune cell adhesion
and the co-stimulation of antigen-presenting cells [88]. Gzma and Prf1, which encode
proteins underlying the main mechanisms by which NKT cells induce cytotoxicity, were also
upregulated by HFDs [89]. The additional upregulated genes included Cxcl10, a activator
and recruiter of NKT cells, and Il12b, a cytokine that serves as a growth factor for NKT cells,
enhances their cytolytic activity, and induces interferon-gamma production [90,91]. Several
studies have identified IL-12 as a potential driver of chronic inflammation in the context of
AMD [92,93]. In addition to NKT cells, T cell-related genes such as Ccl19, Ccl22, and Cd28
were upregulated, which are involved in activation and chemoattraction [94].

Several other inflammatory genes upregulated included Ccl4, which has been shown
to mediate inflammation in response to retinal damage, as well as prostaglandin and TNF
families [95]. Tumor necrosis factors (TNF), particularly TNF-alpha, are pro-inflammatory
cytokines whose signaling is thought to play a role in the neovascularization of the
RPE/choroid and AMD pathogenesis [96–98]. Many members of the TNF superfam-
ily were upregulated in the GF-HFD group, including Tnfaip2, Tnfrsf11b, Tnfrsf13b, Tnfrsf1b,
Tnfsf10, and Tnfsf14. Genetic variations of Tnfsf10 in particular have been associated with
AMD [99]. Anti-TNF therapies may be effective in treating AMD and reducing the fre-
quency of anti-VEGF therapy [100,101]. Finally, we noted the elevation of Prostaglandins
D, E, and I (Ptgds, Ptges, and Ptgis, respectively), along with Cox-1 and Cox-2 (Ptgs1 and
Ptgs2), which synthesize prostaglandins. Prostaglandins regulate vascular permeability
and vasodilation and are induced in the inflammatory response. Elevated transcripts of
these genes may contribute to the bridge between inflammation and aberrant blood flow
and vascular leakage; however, the role of prostaglandins in the retina and RPE/choroid is
unclear, with only sparse evidence suggesting prostaglandins are implicated in the patho-
genesis of AMD and DR [102]. In a rat model of CNV, ketorolac, a type of anti-inflammatory
NSAID that inhibits COX enzymes, was shown to significantly reduce CNV leakage and
vascular budding [103].

4.3. High-Fat Diet Affects Gene Expression Involved in the Complement System

One specific immune pathway that is highly implicated in AMD is the complement
system, with existing reviews that detail how complement activation may influence AMD
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pathogenesis [104]. The complement system is important for the removal of immune
complexes, apoptotic cells, and adaptive immunity. With over 40 proteins involved in
the cascade, alterations at multiple steps can impart significant differences in the over-
all inflammatory response. In our transcriptional analysis, we identified several DEGs
involved in the complement cascade, such as C1qb, C2, C4b, and Cfh. CFH was the first
complement protein associated with AMD in genetic studies and can be directly synthe-
sized by RPE cells [105–107]. The CFH Y402H polymorphism is thought to increase AMD
risk by up to sevenfold [108]. CFH binds to polyanionic moieties, in particular sulfated
glycosaminoglcyans (GAGs). The CFH Y402H polymorphism is thought to alter the bind-
ing property of CFH to GAGs, such as heparan sulfate [109]. Interestingly, one of the
top 10 molecular functions upregulated by HFD was heparin binding, which is a well-
established mechanistic function of CFH (Figure 2) [110]. In addition to CFH, variations
in C2 have been linked to differential risk for AMD by several groups [111,112]. We also
identified elevated expression of C4b, whose variants may also play a role in AMD [99].

While the precise role of different components of the complement system in AMD
pathology is unclear, it appears that the RPE/choroid is an important hub for complement
activity. The membrane attack complex (MAC) is the endproduct of the complement
cascade, and studies report MAC localization to the choriocapillaris of the choroid, as
opposed to RPE or retinal tissue [113,114]. After comparing the presence of MAC in aged
human tissues across multiple organs, Chirco et al. determined that the MAC selectively
accumulates in the choroid, which may partly explain the tight association between AMD
and the complement system [115]. In vitro studies confirm that direct exposure of the MAC
to choroidal endothelial cells promoted death and upregulated pro-angiogenic factors,
ultimately leading to CNV [116]. HFDs have been shown, in addition to promoting
chronic inflammation, to specifically induce complement activation in animal models and
upregulate levels in the blood [117]. One study found that aged Cfh+/− mice fed a high-fat,
high-cholesterol diet developed features of AMD, including complement dysregulation,
sub-RPE deposits, and impaired visual function changes resulting from changes in RPE
morphology [118]. Further studies looking into the interactions between age, diet, and
complement dysregulation are required. A number of targets in the complement cascade
are being targeted for the potential therapeutic benefit of AMD [119,120].

4.4. Additional Genes and Pathways Are Differentially Represented by High-Fat Diet in
Germ-Free Mice

Several other pathways that were affected by HFD were related to ECM interactions
and RPE function. Changes in the ECM, including sub-RPE deposits and the thickening
of Bruch’s membrane, are often the initial clinical symptoms of AMD. These deposits
consist of many different substances, including ECM proteins, complement, lipids, and
other cellular debris. GF-HFD mice demonstrated elevated transcriptional levels in various
ECM components, such as Apoe, Adamts9, Esm1, Col2a1, Col8a1, Col10a1, Fbln1, and Fbln5.
As a key player in lipid, vitamin, and cholesterol transport, variants in APOE are found
to be associated with AMD [121]. In AMD, unbalanced lipid exchange may drive RPE
decline and impair the exchange of lipids across from the choroid, which may potentiate
pathological changes in the eye [122]. APOE is the most abundant lipoprotein component
of drusen, which can stress the RPE, hinder nutrient exchange, and serve as a focal point
for generating inflammation and CNV [108,123]. Additionally, APOE has been found
to interact with complement, co-localizing with the MAC in human eyes [124]. Within
the apolipoprotein family, Apold1 and Apol7c also were identified DEGs in GF-HFD mice.
Apold1 (Apolipoprotein L Domain Containing 1) is a protein that regulates endothelial and
vascular functioning. Its expression has been found to be elevated in the RPE/choroid of
AMD patients compared to controls [125].

Our analysis also identified the elevated expression of other matrix proteins, including
collagens, metalloproteinases, and other secreted proteins. Of note, collagen Col8a1 and
Col10a1 expression increased, with both genes having genetic associations with AMD [126].
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In addition, Col2a1 previously has been linked with ocular disorders such as retinal de-
tachment [127]. Fibulins Fbln1 and Fbln5 are differentially expressed ECM glycoproteins,
and of note, one study has associated mutations in FBLN5 with AMD [128]. Adamts9 is a
metalloproteinase that was identified by the AMD Gene Consortium as one of seven new
loci associated with AMD [99]. Endothelial cell-specific molecule 1 (Esm1) is a secreted
protein that is a highly overexpressed gene in oxygen-induced retinopathy. Esm1 mod-
ulates Vegf bioavailability and leukocyte extravastion [129]. In addition, ESM1 variants
are associated with increased levels of advanced glycation products (AGEs), which are
significant components of macula drusen and basal lamina deposits [130,131]. Patients fed
a high-fat diet had elevations in blood levels of AGEs [130].

Given the functional relevance and spatial proximity, the RPE is thought to be the prin-
cipal driver of debris accumulation and deposition in both aging and AMD eyes [108,132].
A HFD altered the transcription of multiple genes related to RPE function and the visual cy-
cle, including Lrat, Rpe65, Rdh5, and Rdh10. These genes were also found to be upregulated
in aged, human RPE [133]. LRAT is an enzyme that catalyzes vitamin A esterification into
all-trans-retinyl esters, which are converted to 11-cis-retinol via RPE65 [134]. By-products
of the RPE visual cycle are common constituents of lipofuscin, which are toxic to RPE cells
and may impact AMD pathogenesis [135]. These by-products positively regulate LRAT
expression, and thus a positive feedback mechanism has been suggested that links visual
cycle by-product accumulation with the RPE visual cycle [133]. HFD-fed mice tend to have
thicker Bruch’s membranes, RPE dysfunction, and greater accumulation of basal laminar
deposits, suggesting HFDs may alter the ECM in AMD pathobiology [22,23].

Across HFD research, the composition of HFDs in animal studies ranges greatly,
spanning from 8.3–80% fat content [136]. The selection of HFD, therefore, deserves fur-
ther discussion. The HFD used in these experiments approximates a “Western diet”,
which, according to reports from the National Health and Nutrition Examination Survey
(NHANES), is around 35% fat by energy content and 23% by simple carbohydrates such
as sucrose [137,138]. Whereas diet duration did not vary, the composition was chosen to
parallel human dietary patterns and thus included a high sucrose component of around
21% by energy content. Additionally, we wanted to examine how our results compared
to other HFD RPE/choroid transcription data in mice with intact gut microbiota. In this
context, Andriessen et al. detected elevated levels of mRNA of Il6, Tnf, and Vegfa in the
choroids of mice fed HFD compared to mice fed a regular-chow diet, suggesting an increase
in endotoxemia and systemic inflammation [31]. Separately, Zhang and colleagues demon-
strated increased Vegfa, as well as a non-significant rise in ApoE mRNA in the RPE/retina
in mice fed HFD [22]. That Andriessen et al. and Zhang et al. demonstrated elevated Vegfa
expression, in conjunction with our GF model of elevated Vegfc, suggests the HFD may
impact angiogenesis with or without microbiota [22,31]. Additionally, our experiments
with GF mice detected the relative overexpression of numerous Tnf superfamily genes and
ApoE, which were also implicated in these other studies. Nevertheless, due to study design
differences with respect to HFD composition and the mode of gut microbiota depletion, it
is difficult to directly compare these results.

Within our model, when contrasting these results with previously identified changes
in retinal transcription of GF mice, HFDs induced a greater shift in transcription in the
RPE/choroid, with little overlap in the genes affected. In fact, the only two overlapping
genes were Ms4a6b (membrane spanning 4-domains A6A) and Hbb-bs (hemoglobin subunit
beta), both of which were upregulated in the retina and in the RPE/choroid [34]. These
transcriptional differences may partly be due to the distinct functions of the retina and
RPE/choroid within the visual system, with the RPE/choroid providing barrier protection,
nutrients, substrates, and waste clearance for the neural retina [14]. Additionally, the
separate cell types and lack of vascular barrier of the choroid compared to the immune-
privileged retina could further contribute to discrepancies in transcriptional effects caused
by systemic, metabolic changes induced by diet in the absence of gut microbiome. As
changes in RPE/choroid biology often precede overt signs of retinal dysfunction, these
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findings also suggest tissue-specific sensitivity and a response to dietary changes over a
fixed duration. One recent study found that mice fed a HFD with 45% fat for 12 months
demonstrated no retinal function abnormalities as measured by ERG; however, evidence of
lipid deposition, RPE distortion, and endothelial vacuolization was present in the HFD-fed
group [139]. Interestingly, an unbiased pathway analysis of transcriptional changes in
the retina and RPE/choroid in GF-HFD mice both point toward alterations in angiogenic
and inflammatory pathways in response to the dietary intervention. Overall, however,
these results indicate that the diet-microbiome-transcriptome interactions could be distinct
in the RPE/choroid compared to the retina. Because these experiments were performed
using GF mice, the transcriptional pathways affected by HFD in the RPE/choroid could
either be attenuated or exacerbated by the presence of the gut microbiome. Gut microbiota
can significantly change dietary metabolism and the resultant small molecule profiles of
the host organism, potentially influencing the transcriptional responses of the retina and
RPE/choroid. Likewise, HFDs have the capacity to alter the gut microbiome, a process that
itself may affect retinal health and homeostasis. As a result, the microbiome-dependent and
microbiome-independent effects of HFD on the RPE/choroidal transcriptome are complex
and require further investigation.

While the pathobiology between HFDs and retinal disease is studied mostly in rodent
models, its connection with human pathways and disease still holds biological plausibility,
though proof of causality is absent. Nevertheless, there are numerous epidemiologic
associations of AMD with high-fat or Western diets, with some reporting up to a threefold
greater incidence of late AMD [9,140]. In addition to low-grade inflammation caused by
HFDs, its potential role in aberrant lipid homeostasis may further contribute to AMD
pathology, especially given that about 40% of drusen is composed of lipid-containing
particles [141]. The genetic components of lipid metabolism and transport, such as APOE
alleles, along with serum lipid levels, have also been identified as differentiators for AMD
risk [142,143]. Beyond AMD, saturated fatty acid intake has been linked with increased
prevalence and severity of DR, with some studies reporting an odds ratio of 2.37 [5,144]. In
rhesus monkeys, which are more biologically similar to humans, a high-fat Western diet
for 2–4 years resulted in retinal changes characteristic of human DR, including venous
engorgement, macular exudates, and hemorrhages [145]. Further studies are warranted to
bridge HFD animal studies with human manifestations of AMD and DR.

5. Conclusions and Limitations

This study presents data that suggests diet can impact the RPE/choroid transcrip-
tome in the absence of gut microbiota. We use the framework of AMD pathogenesis to
highlight gene expression and biological pathways that contrast greatly between GF-HFD
and GF-ND mice. In particular, HFDs altered the transcription of genes involved in an-
giogenesis, inflammation, complement, and RPE function. As an unbiased exploration of
the RPE/choroid transcriptome, the major limitation of this study is its reliance on RNA-
sequencing. Future studies should include the quantitative PCR of specific genes, protein
expression/proteomics, and functional assays in order to better elucidate the putative role
of HFDs in RPE/choroid biology. In this current investigation, we did not address the
effects of HFD-induced changes in GF models of AMD; future studies, including laser-
induced CNV and other AMD animal models and aging studies, should be directed to
assess potential relationships between HFDs and the pathogenesis of retinal disease, as well
as to explore the dietary effects in the absence of gut microbiota. Additionally, emerging
evidence suggests a more granular approach towards dietary fat and retinal disease may
be warranted, as specific types of fat, such as saturated fats and oleic acid, may confer
different risk profiles for AMD [6,146–148].

AMD is a multifactorial, vision-threatening disease whose prevalence is expected to
increase dramatically as other factors, including obesity, diabetes, and average population
age, continue to rise [1,149]. Diet is one of the primary modifiable risk factors for AMD pro-
gression. However, interventions targeting AMD through diet are rare. Current examples,
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such as AREDS nutritional supplementation, have limited efficacy and are found to reduce
the risk of AMD progression in only certain sub-populations [150,151]. Therefore, investi-
gating the complex interactions between diet, the gut microbiome, and retinal health may
potentially unlock new insights for AMD prevention, as well as develop the foundation for
interventions that are minimally invasive and cost-effective.
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